| | | | | A | |------|------|---|----|---| | EJE | nei | 1 | 10 | 1 | | 1-16 | 1601 | - | 10 | - | | -With Company of the | NAMES OF TAXABLE PARTY. | | | | | | 21/A | 904 | | | 1 | | | | | |---|--|----|---|------|----|----------|------|------------|----|-------|----|------|----|-----|--| | PART | IA | 18 | C | D | Ε | F | P | 100 | d | d^2 | X | XT | P2 | i2 | | | 1 | 6 | 1 | 0 | IA | 1 | *CATORIA | 3- | 1 | 2 | 4 | 4 | 16 | 9 |) | | | 2 | 1 | 0 | 0 | Para | 1 | 0 | 1 | 2 | -1 | 1 | 3 | 9 | | 14 | | | 3 | 1 | 0 | 0 | 0 | 0 | options. | 1 | -1 | 0 | 0 | 2 | 4 | 1 | | | | | 0 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 4 | 16 | 4 | 4 | | | - Parameter and the second | territoria de la composición dela composición de la composición dela composición de la composición dela composición de la composición de l | -6 | 0 | 1 | 0 | | 2 | 0 | 2 | 4 | 2 | 4 | 4 | 0 | | | 5 | 0 | 1 | 1 | A | 1 | 1 | 3 | 3 | 0 | 0 | 6 | 36 | 9 | 9 | | | 6 | C. | | 1 | | 1 | | 3 | 12 | 1 | | 5 | 23 | 9 | 4 | | | 7 | 0 | 1 | | 1 | 1 | 1 8 |) | 14 | | | 1 | | | | | | 8 | 0 | 0 | 0 | 1 | 11 | 1 | 2 | - Constant | 1 | 101 | 3 | 9 | 4 | | And in column 2 is not a little of the littl | | And Committee of Michigan | | | | | | | 17 | 12 | 15 | 1 | 29 | 1119 | 41 | 124 | - | $$f_{xx'} = 1 - \frac{5^2 d}{5^2 x} = 1 - \frac{6'98}{1'33} = 6'43$$ $$5^{2}d = \frac{\xi d^{2}}{N} - \overline{d}^{2} = \frac{11}{8} - 0'625^{2} = 0'98$$ $$\bar{d} = \frac{\epsilon d}{N} = \frac{5}{8} = 0'625$$ $$S_{X}^{2} = \frac{EX^{2}}{N} - \bar{X}^{2} = \frac{119}{8} - 3'625^{2} = 1'73$$ $$\bar{X} = \frac{\sum X}{N} = \frac{29}{8} = 3'625$$ b) GUTMAN-FLANAGAN $$f_{XX'} = 2\left(1 - \frac{S^2p + S^2}{S^2X}\right) = 2\left(1 - \frac{0'61 + 0'75}{1'73}\right) = 0'43$$ $$S_p^2 = \frac{Ep^2}{N} - p^2 = \frac{41}{8} - \frac{2'13^2}{8} = 0'61$$ $$\bar{p} = \frac{Ep}{N} = \frac{17}{8} = \frac{2'13}{8}$$ $$S_1^2 = \frac{E^2}{N} - \frac{1^2}{8} = \frac{2'4}{8} - \frac{1'5^2}{8} = 0'75$$ $$\bar{l} = \frac{E}{N} = \frac{12}{8} = 1'5$$ | | | | | - | |-----|---------|-----|-----|-------| | |
000 | *** | CID | 1 | | - 5 | | w | 20 | Lane. | | | | . 5 | | | | | | | | |--------|------|------|------|------|------|------|----|-----|------| | PART | . A | 8 | C | 0 | E | F | X | Xs | | | 1 | 0 | 0 | _0 | 0 | 0 | 0 | 0 | 0 | | | 2 | 1 | 1 | 0 | 0 | 1 | 1 | 4 | 16 | | | 3 | 1 | 1 | 1 | 0 | 0 | 1 | .4 | 16 | | | 4 | 0 | 1 | 4 | 0 | 1 | 0 | 3 | 9 | | | 5 | 0 | 0 | 0 | 1 | 1 | 1 | 3 | 9 | | | 8 | 1 | 1 | 1 | 0 | 0 | 0 | 3 | 9 | | | 7 | 0 | 4 | 4 | 4 | 1 | 0 | 4 | 16 | | | 8 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 36 | | | 9 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 36 | | | 10 | 1 | 1 | 1 | 1 | 0 | 1 | 5 | 25 | | | P | 0'6 | 0'8 | 0'7 | 0'5 | 0'6 | 0'6 | | | | | 9 | | 0'2 | 0'3 | 9,2 | 0'4 | 0'4 | | | 2 | | 2j=p.9 | 0'24 | 0,16 | 0'21 | 0'25 | 0'24 | 0.54 | | | 1'34 | | 2 | | | | | | | 38 | 172 | | a) $$x = \frac{1}{n-1} \left(1 - \frac{\sum S^2 j}{S^2 x} \right) = \frac{6}{5} \left(1 - \frac{134}{2'76} \right) = 0'62$$ $$S_{3}^2 = \frac{\sum X^2}{N} - \bar{X}^2 = \frac{172}{10} - 38^2 = 17'2 - 14'44 = 2'76$$ $$\bar{X} = \frac{\xi X}{N} = \frac{38}{10} = 3'8$$ 6) $$f_{22} = 1 - \frac{S_1^2}{S_2^2} (1 - r_{41}) = 1 - \frac{2'76}{20} (1 - 0'62) = 0'95$$ | EXERCISE 3 | AND THE PROPERTY OF PROPER | 1.19 | |----------------|--|-------| | $f_{xe} = 0.6$ | CI = 2+1 + Emax = 0,4=0,79 | -0.39 | | Zx = 0.5 | ZT'= 1xT Zx = 0,8.0,5 = 0,4 | | | CL = 90% | BOSSON S. A. [xx = 1- [xe] | | Resson Sid-1 xx' = 1-1xe | slide 9. deduction 7 $$f_{xx'} = 1-0.6^2 = 1-0.36 = 0.64$$ | $f_{xx} = \sqrt{0.64} = 0.8$ Emax = Zc. Sztex = 1,65.0,48 = 0,79 You have to find in the 2 scores table the 2 value that corresponds to an area of 0.95 -> 2c = 1.65 SZTZX = V1- TXX: · V TXX: = V1-0.64 · V0.64 = 0,6.0,8 = 0,48 100,0 = 1,0 = 1,0 0 100,0 = 1,0 = 1,0 0 100,0 = 1,0 0 100,0 = 1,0 0 100,0 = 1,0 0 100,0 = 1,0 0 100,0 = 1,0 0 100,0 = 1,0 0 100,0 = 1,0 0 100,0 = 1,0 0 100,0 = 1,0 0 100,0 0,40±0,70 TCMA 5.2. Tpi = 0'44 FÓRMULA DE SPEARMAN-BROWN Exercicio $$\frac{1}{5}$$ $\frac{1}{2} = 0.62$ $\frac{1}{2} = 0.62$ $\frac{1}{2} = 0.89$ $\frac{1}{4} 0.82$ $\frac{1}{4}$ 1-072/ < 2'306-Ho la diferencia entre ambos coeficientes no es estadísticamente significativa. | PART | A | B | C | 0 | X | Xx | $k_{120} = \frac{n}{n-1} \left(1 - \frac{\epsilon pq}{s_{x}^{2}} \right) = \frac{4}{4-1} \left(1 - \frac{0.42}{0.87} \right) = 0.2$ | |------|------|--------|----------------------|--------|-------------------|--------------|---| | 1 | T | 4 | 0 | 1 | 3 | 9 | M-1 (55x) 4-1 (007) | | 2 | | | | 1 | 4 | 16 | $5x^2 = \frac{5x^2}{N} - x^2 = \frac{48}{6} - 2^167^2 = 0$ | | 2 | | 0 | 0 | 0 | 1 | team sondoor | 5x = N 6 | | 6. | 0 | 1 | 1 | T | 3 | 9 | $\bar{X} = \frac{\epsilon x}{N} = \frac{16}{6} = 2'67$ | | en - | | 1 | 0 | 0 | 2 | 4 | N 6 | | 7 | | | 0 | 1 | 3 | 9 | Production (market production) | | 6 | 5-17 | 3 0'83 | $\frac{2}{6}$ = 0'32 | \$ -06 | 1 | | Txv = V(xxi = 1023 = 048 | | 12 | 1011 | 0.14 | 063 | 0 25 | | | | | 0.9 | 01/4 | 1 6/4 | 0,55 | 0'22 | The second second | | 2=0172 | | 1, 4 | 1 | | | | 16 | 48 | 네마스 얼마나 보는 아들씨는 얼마를 살아 가는 하는데 다 | (xx = > 520=10 52/=11 EDERCICIO 8 (se espera $$x < \beta$$ porque x infravalora el coeficiente de fiabilidad $n_n = 10$ fin = 25 cuando el n^2 de itans en cada subtest es objerente) varianta de cada elemento $x = \frac{n}{2} \left(1 - \frac{2}{30}\right) = \frac{2}{2-1} \left(1 - \frac{10+11}{30}\right) = 06$ $$\beta = \frac{5^{2} \times 5^{2} \text{ is a substitute of the state of$$ Exercicio 9 Lim = $$X^{\pm}$$ Emax = 10^{\pm} 20 < -10 Txe = $0'4$ $S^{2}x = 25 \rightarrow Sx = [25:5]$ Emax = $Se \cdot k = 2 \cdot 10 = 20$ $X = 10$ $Se = Sx \cdot 14 - [xx] = 5 \cdot 14 - 0'84 = 5 \cdot 0'4 = 2$ $NC = 99 / \rightarrow x = 0'01$ $[xx] = 1 - [x] = 1 - 0'4^{2} = 1 - 0'16 = 0'84$ PRANSPARENCIA 10 DEL $k = \sqrt{\frac{1}{\alpha}} = \sqrt{\frac{1}{0.01}} = 10$ Lim = X = Emax = 4 = 6'19 $$< -2'19$$ Emax = $\frac{10'19}{-2'19}$ Emax = $\frac{10'19}{-2'19}$ Se = $\frac{5}{\sqrt{1-5}}$ = $\frac{5\sqrt{4-0'6}}{-3'16}$ = $\frac{3'16}{-3'16}$ ## EDERCICIO 11 X=4 N=300 $$\bar{X} = 36$$ $S_{x}^{2} = 25 \rightarrow S_{x} = \sqrt{25} = 5$ $\frac{5^{2}v}{S_{x}^{2}} = 0'81 = \Gamma_{xx}$ $Z_{x} = 1'5$ (b) $$Se = Sx \sqrt{1-\Gamma_{XX}} = 5\sqrt{1-0.81} = 2.18$$ C Lim = V' = Emax = $$42'08 \pm 5'06 < 37'02$$ V' = $V_{xx'}(X-\bar{X}) + \bar{X} = 0'81(43'5-36) + 36 = 42'08$ $Z_{x} = \frac{X-\bar{X}}{5x} \rightarrow 1'5 = \frac{X-36}{5} \rightarrow 1'5.5 = X-36$ $7'5 = X-36$ $7'5 = X-36$ $7'5 = X$ 2. KAPPA: ## EJERCICIO 12 | | TEST | B | 2 | |---------|-------|---------|----------| | TEST A | sons | NO SOB. | P. Maria | | 508. | 6 (a) | 2(b) | 8 (9) | | NO SOB. | 0(0) | 4(4) | 4 (h) | | 2 | 6 (e) | 6 (1) | 12 (N) | $$Fa = \frac{6.8}{12} + \frac{6.4}{12} = \frac{48}{12} + \frac{24}{12} = 4+2=6$$ $$k = \frac{F_c - F_a}{N - F_a} = \frac{10 - 6}{12 - 6} = \frac{4}{6} = 0.67$$